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Quantum chaos in weakly disordered graphene
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We have studied numerically the statistics for electronic states (level spacings and participation ratios) from
disordered graphene dots of finite size, described by the aspect ratio W/L and various geometries, correspond-
ing to finite chiral or achiral carbon nanotubes. Quantum chaotic Wigner energy level-spacing distribution is
found for weak disorder, even infinitesimally small disorder for wide and short tight-binding samples (W/L
> 1), while for strong disorder, Anderson localization with Poisson level-statistics always sets in. Although
pure graphene near the Dirac point corresponds to integrable ballistic statistics diffusive chaotic behavior
seems more common for realistic (weakly disordered) finite samples.
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I. INTRODUCTION

During the last few years theoretical and experimental
interests have grown immensely on monolayer graphite
samples known as graphene following its pioneering
fabrication.'~® This remarkable two-dimensional (2D) honey-
comb lattice structure made of carbon atoms behaves rather
differently from ordinary 2D metals. Its most interesting
quantum property is a linear dispersion near the Fermi en-
ergy, known as the Dirac point, where conduction and va-
lence bands of graphene touch each other and the low-lying
excitations behave as massless Dirac fermions.* Anomalous
integer quantum Hall effect has been observed for
graphene,? which depends on the symmetry of the intro-
duced disorder® and has been discussed in terms of relativis-
tic Dirac theory.*’ Due to its extraordinary properties, such
as high mobility, current-carrying capacity, and thermal con-
duction, graphene is regarded as a good candidate to replace
silicon in future nanoelectronics.® The possibility of gating
and processing graphene sheets into multiterminal devices is
also an intriguing issue for related research.’

The purpose of this paper is to examine the energy-level
statistics and the participation ratios for finite nanotube
type!? graphene quantum dots, characterized by their aspect
ratio W/ L (the honeycomb lattice having width W and length
L taken in various directions), in the presence of bulk disor-
der. In this problem the effect of edge states, which usually
appear for graphene samples in the form of nanoribbons,* is
minimized by taking periodic boundary conditions as in
nanotubes.'® Although graphene is widely regarded as a
rather clean material it is believed that various forms of weak
disorder should exist,''"!® for example, alloy type disorder
from placing at random different lattice atoms or vacancies
in the honeycomb lattice!* or correlated disorder.'> The lat-
ter, by changing the universality class from orthogonal to
symplectic,' is expected to lead to unusual phenomena, such
as weak antilocalization with metallic behavior at the Dirac
point. The usual short-ranged disorder chosen here eventu-
ally causes quantum interference and Anderson localization
in graphene,'® which could limit the performance of
graphene made devices.

The effects of disorder on the conduction electrons can be
studied by usual scattering methods for electron waves in
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alternative finite structures, such as graphene billiards or
flakes.!” For pure graphene samples, near the Dirac point
where the density of states vanishes, the transmission was
shown to become pseudodiffusive in the limit W/L>1 inde-
pendently of boundary conditions (BC).'® Recently,'” a stag-
gered potential on the edge of such terminated honeycomb
lattice, which appears in LDA calculations,”’ was shown to
lead to infinite-mass BC in an effective Dirac equation for
the low-energy spectrum. Along this line of approach,' re-
cent experimental observations showed size quantization of
the electronic levels for graphene flakes?!' and led to theoret-
ical considerations of level statistics in the tight-binding
model.?> These numerical simulations for special geometries
of the honeycomb lattice, with geometrical shapes such as
weakly disordered circles or triangles (named Dirac
billiards®}), were claimed to be in reasonable agreement with
the observed level statistics in the experiment.?! It was also
found that weak disorder at the edges of the sample can
produce quantum chaos independently of the shape of
graphene dots. These calculations with level statistics mostly
between integrable (Poisson) and chaotic (Wigner) did not
show any signature of broken time-reversal symmetry ob-
served in the experiment.

Here we study other sources of quantum chaos in
graphene systems, such as bulk disorder, minimizing the ef-
fect of edges by choosing periodic BC as in nanotubes.?*-2¢
We find that the expected integrable Poisson statistics of the
clean limit becomes chaotic with level repulsion for weak
disorder. Moreover, our study of wide and short finite nano-
tube dots (W/L>1, which is the opposite limit from the
usual nanotubes), confirms the presence of pseudodiffusive
behavior!® even in the infinitesimally small disorder limit. In
the opposite limit of narrow long cylinders resembling usual
nanotubes (W/L<<1), the corresponding level statistics is
ballistic o-function type, similar to that of the pure one-
dimensional (1D) chain. Our study in the presence of disor-
der was not detailed enough to be able to detect the transition
through the chaotic ensembles suggested in Ref. 4 by break-
ing the antiunitary and the time-reversal invariance. Our
findings from level statistics are complemented by the par-
ticipation ratio, which shows more delocalized eigenstates
for weak disorder close to the Dirac point when W/L is small
and localized states for strong disorder and any W/L.
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FIG. 1. The unit vectors of the graphene lattice.

The paper is organized as follows. In Sec. II we introduce
the quantum dots studied. They are honeycomb lattices of
various sizes and geometries, corresponding to finite length
or toroidal, chiral, and achiral carbon nanotubes. Their tight-
binding Hamiltonian in the presence of disorder is intro-
duced. In Sec. IIT we show that for diagonal and off-diagonal
disorders (in the case of large W/L even for infinitesimally
small disorder) Wigner chaotic level statistics is obtained
while for strong disorder it always becomes Poisson, inde-
pendently of the type of the graphene dot. Our results for the
participation ratio complement these findings by showing
more extended eigenstates close to the Dirac point for small
W/L and the presence of Anderson localization for strong
disorder independently of W/L. Finally, in Sec. IV we sum-
marize our main conclusions.

II. TIGHT BINDING HAMILTONIAN

The tight-binding Hamiltonian of 7 bonding in graphene
is

H=2 eclc;- 2 ’Yi,j(CjCj*‘CJTCi), (1)
i (i.j)

where c,-(cf) annihilates (creates) an electron at the sites of
the honeycomb lattice and &; represents the on site energy
which in the case of diagonal disorder is a random number in
the range [-w/2,w/2], where w denotes the disorder (y;;
=1). For off-diagonal disorder &;=0 and the logarithm of the
nearest-neighbor hopping element 7; ; takes random values in
the range [-w/2,w/2].%

In the case of periodic BC only in one direction, the other
being much longer ending with hard wall BC, the graphene
dots represent finite length single wall carbon nanotubes with
W/L<1."" Such objects are built up by rolling sheets of
graphene into very long cylinders and they are effectively
one dimensional. Their electronic properties, which underpin
the evolution to nanoelectronics, depend on the rolling direc-
tion. This is characterized by a set of two integers (n,m)

corresponding to the so-called chiral vector C,=na,+ma,,
written in_terms of primitive unit lattice vectors (see Fig. 1)
> 1 3, - > > A .

ay=a(3,%), a;=a(1,0), a,|=|ay|=\3ac_c=a, where ac_c is
the distance between two atoms and a the honeycomb lattice
constant. Since various possibilities exist to roll up graphene,
depending on the rolling direction one obtains armchair, zig-
zag, and chiral nanotubes.!? The armchair nanotubes charac-
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terized by (n,n) can be obtained by rolling the graphene
sheet along one of the three vectors joining a honeycomb
lattice site to its nearest neighbors. They are always metallic
and have a perimeter which consists of n hexagons con-
nected by n single bonds. The zig-zag (n,0) nanotubes are
defined by a rotation of the graphene sheet by 90° and the n
hexagons followed by n single bonds lie along the longitu-
dinal axis of the tube (the rolling direction is perpendicular).
The (n,0) nanotubes are metallic only when n is a multiple
of 3. In all other cases, that is rotating the graphene sheet in
between the previous two and then rolling it up, it is equiva-
lent to placing the hexagons followed by single bonds along
intermediate directions. This third type of nanotube called
chiral (n,m), n# m, is metallic only when n—m is a multiple
of 3.!° The hexagonal lattice symmetry guarantees that the
above conclusions hold for the whole honeycomb lattice.

Our approach consists of studying the effects of disorder
in the chosen graphene quantum dots by obtaining numeri-
cally the eigenvalues and eigenvectors of the Hamiltonian H
in the presence of disorder. In our computations we have
fixed the short-ranged site (diagonal) and bond (off-diagonal)
type disorders for many random samples. The statistics of the
obtained eigensolutions is subsequently analyzed in order to
address the quantum chaos issue. Since for the (n,n) arm-
chair nanotube a unit cell along its long direction consists of
two slices around the tube (with 4n carbon atoms while the
total number of hexagons covering the unit cell is N,,,=2n),
the number of such unit cells along a finite nanotube is N,
and the studied nanotube dots can be classified in terms of n
and N,.

In the absence of disorder (w=0 and 7; ;=) the disper-
sion of pure graphene sheet taken in the orientation of an
armchair nanotube along the x axis with its rolling direction
along the vertical y axis is?®

_
I3k, k
E(k,k,) = * y{l +4 cos(%)cos(%)
X 12
+4 cos?| 22 , (2)
2

with quantized values of k=(k,,k,). For a finite (n,n) arm-
chair nanotube dot (periodic BC along y and hard wall BC
along x) the eigenstates are labeled by two integers via

Jo  ka=—7=1], (3)
3n

with j,=1,...,N.and j,=1,...,2n. The output is 2nN, posi-
tive and exactly equal negative eigenvalues (a fact of sublat-
tice symmetry,” since the two types of atoms A and B in
graphene for nearest-neighbor hopping make two intercon-
nected A and B sublattices). For such dots two E=0 modes
exist only if 2N_.+1 is a multiple of 3. In the case of infinitely
long nanotubes the k.a quantization of Eq. (3) does not arise
and the band structure of Eq. (2) becomes one dimensional
as a function of k, only.!® For toroidal armchair nanotube
dots, where appropriate periodic BCs are imposed also along
the longitudinal direction with kxa=§v—’: Je Jx=1,....N,, four
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FIG. 2. (Color online) The normalized level-spacing distribution function P(S) from ten samples having width W and length L with
diagonal disorder (for the disorder strength w see figure), together with the three chaotic Wigner [Gaussian orthogonal ensemble (GOE),
Gaussian unitary ensemble (GUE), Gaussian symplectic ensemble (GSE)] and integrable Poisson limits: (a) For dot structures with 4960
sites and a very small aspect ratio W/ L= 0.04, obtained from N.=40 unit cells of the (7,4) chiral nanotube. As the disorder strength increases
a gradual crossover is seen from a broad & function (in the form of a Gaussian around the mean) for clean nanotubes to a Poisson distribution
for strong disorder. (b) The same as in (a) but for wide and short (N.=1 cell) structures with aspect ratio W/ L= 21 (4464 sites) from a chiral
(36,180) nanotube. In this case the distribution is close to Wigner even for almost zero disorder. [(c) and (d)] From N,=40,12 unit cells with
4960 and 5760 sites and aspect ratios W/L=~0.04,17.3, obtained from the (7,4) and (120,120) toroidal nanotube geometries, respectively.
The difference between the results of (c) and (d) is probably due to chirality. The corresponding densities of states are shown in insets, with
the characteristic dip near the Dirac point which remains for weak disorder but closes for strong disorder (w>3), leading to a broad density
of localized states.

E=0 modes exist for N, being a multiple of 3.

For the more general dots corresponding to chiral (n,m),
n # m, nanotubes the quantized component of the wave vec-
tor (n,m) along the perimeter of the nanotube, where peri-
odic BCs are imposed, satisfies

2 | .
kyaz—]y, ]),zl,

’wa’ 4
Wia ) (4)

having width given by their perimeter W=a\n?+m?+nm and
Njex=2W?/(a’d,) hexagons in a unit cell of length |T|
=\3W/d,, d, being the greatest common divisor of 2m+n
and 2n+m. For a given value of the quantized k, the energy
of an infinite chiral nanotube dot is a function of the continu—
ous longitudinal component k, only, with — <k <+pq

For armchair (n,n) nanotubes the unit cell has width Vk/

=a\3n, length |T|=a, and the number of hexagons in a unit
cell is Nj,,,=2n. For N, unit cells of a chiral (n,m) nanotube
the dot length is L=N_|T| and the considered aspect ratio
W/L=d,/(\3N,), which reduces to W/L=\3n/N, for (n,n)
armchair nanotube dots.

The participation ratio for each eigenstate of energy E is
defined in terms of normalized amplitudes over all lattice
sites by the sum (Z;[¢;(E)|)~". It is a non-self-averaging
quantity alternative to the usual localization length, which
was studied for nanotubes by scattering techniques produc-
ing interesting results.?*-2¢

III. RESULTS

A. Pure graphene sheets

In the absence of disorder the eigensolutions can be easily
obtained, also for chiral nanotubes where their unit cell along
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FIG. 3. (Color online) The participation ratios of the corresponding eigenstates vs energy for the same parameters as in Fig. 1. They
indicate the number of sites where each eigenstate has significant amplitude. For a perfectly extended state, spreading to all sites of the
chosen lattice, the participation ratio should be =~5000. Our magnified results for pure graphene (w=0) are shown in insets (note the linear

scale on the y axis).

the tube can become arbitrarily large depending on (n,m).
For pure graphene dots and arbitrary W/L the expected be-
havior is integrable Poisson statistics, which becomes ballis-
tic 1D-like in the limit W/L<<1. This can be simply under-
stood near the Dirac point where the density of states is
linear. In this regime the integrated density of states is
ME) x E%. Therefore, the statistics of the energy levels E
should be replaced by the statistics of the unfolded squared
levels E2, which is required in order to have constant density
of states with fixed mean level spacing. If we use the usual
quadratic dispersion for the squared levels E20<k5+k§ the
statistic near the Dirac point becomes equivalent to the sta-
tistics of integrable billiards,* with E? replaced by E from

ij,jy = ajf +j§, Juw Jy integers, (5)
with « being an irrational number fixed by the size of the
adopted sample. The E’s from Eq. (5), which have a constant
density of states near the Dirac point, obviously give Poisson
level statistics,* except for very long samples where the sum
of Eq. (5) reaches the 1D limit and should depend on one
parameter only so that the corresponding level statistics if
W/L<1 becomes a trivial & function.

Although we have verified that a broad & function holds
for small W/L [e.g., by adding infinitesimally small disorder
is shown in Fig. 2(a), which denotes the expected trivial
1D-like ballistic behavior], we find a different result for large
W/L. In this case statistics becomes chaotic even for almost
pure systems [e.g., see the Wigner distribution shown in Fig.
2(b)]. Therefore, in the almost clean limit the ballistic behav-
ior is valid only for small W/L and is replaced by a chaotic
curve when raising the aspect ratio W/L. In the chaotic case

a more dominant role is given to the abrupt edges, which add
strong intervalley scattering.

In the insets of Fig. 3 the behavior of the corresponding
eigenstates of pure graphene dots can be seen via their par-
ticipation ratios. The main observation is that for the small
W/L [Fig. 3(a) inset] the majority of ballistic states have a
higher participation ratios when compared to those with large
W/L [Fig. 3(b) inset]. The distribution of the participation
values becomes sharper for the small W/L toroidal nanotube
dots [Fig. 3(c) inset] when compared to large W/L (Fig. 3(d)
inset). For toroidal nanotube dots BCs exist in both direc-
tions and small W/L is the same as large W/L, so that only
chirality from the orientation of the lattice probably plays a
role. In this case the behavior of Fig. 3(b) near the Dirac
point is absent.

B. Diagonal and off-diagonal disorders

The density of states and the level-spacing distribution
function P(S) are computed for various graphene dots with
aspect ratios W/L, including chiral nanotube dots. The cor-
responding nearest-level-spacing distribution function is il-
lustrated for different values of diagonal disorder in Fig. 2.
All the unfolded energy levels in the band are considered for
10 runs, requiring the density of states to be constant every-
where in the band. No significant difference was found when
levels near the Dirac point are considered only. For small
W/L [Fig. 2(a)] the level-spacing distribution function P(S)
is shown to vary from a broad dS-function-like curve for al-
most zero disorder (w=10"7) toward the Poisson localized
limit for strong disorder w. For large W/L we observe in-
stead [Fig. 2(b)] a crossover not from a & function but from
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FIG. 4. (Color online) (a) The level-spacing distribution function P(S) and (b) the participation ratio for off-diagonal disorder of strength
w (see figure) for the small aspect ratio W/L=0.04 chiral (7,4) nanotube geometry of N.=40 cells (4960 sites).

a Wigner chaotic distribution toward the localized Poisson
limit in the strong disorder w. In the insets of Fig. 2 the
corresponding average density of states is shown with the dip
near the Dirac point, which disappears when the disorder
increases beyond a certain value.

In Fig. 3 we demonstrate the participation ratio which
measures the extent of the corresponding eigenstates on the
chosen lattices. Near the Dirac point the values are seen to be
higher for small W/L [Fig. 3(a)] when compared to large
W/ L [Fig. 3(b)]. This observation is related to the observed &
function and Wigner P(S) distributions of Fig. 2 for small
and large W/L, respectively. Similar results, shown in Figs.
3(c) and 3(d), are obtained for toroidal nanotube dots. For
strong disorder they indicate localization of all the states in
the band with their participation ratio becoming small.

Off-diagonal disorder is certainly different since it pre-
serves chiral symmetry by connecting one sublattice to the
other.?” In Fig. 4 we show our results for the chiral (7,4)
nanotube with off-diagonal disorder in the small W/L <1
limit. Figure 4(a) shows P(S) (with the density of states in
the inset) and Fig. 4(b) shows the participation ratio of the
corresponding eigenstates. The results are similar to the di-
agonal disorder case, with the exception of the appearance of
a singularity in the density of states, which develops at the
band center (not seen in the figure due to scale).”’

IV. DISCUSSION

Our study of the eigensolution statistics of nanotube quan-
tum dots in the presence of disorder, for various finite geom-

etries specified by the aspect ratio W/L, reveals some inter-
esting features. First, quantum chaos becomes relevant also
for weakly disordered graphene, with pseudodiffusive
Wigner statistics even for almost zero disorder when W/L is
large. Second, for strong disorder localization occurs for all
states in the band, in agreement with finite-size scaling
transfer-matrix studies at the Dirac point. Third, near the
Dirac point, due to the linearity of density of states of pure
graphene, a natural unfolding of levels which makes the den-
sity of states constant corresponds to the study of squares of
energies E? (instead of E with linearly vanishing density)
which gives integrable irrational billiard Poisson statistics.
However, since infinitesimal disorder is inevitable the ques-
tion of whether ballistic or diffusive behavior prevails near
the Dirac point can be answered in favor of a simple 1D-like
ballistic behavior for small W/L and chaotic for large W/L.
In conclusion, our computations for finite graphene quan-
tum dots in the presence of weak disorder show quantum
chaos. This demonstration in graphene nanotube dots is con-
sistent with experimental studies of graphene flakes?' al-
though more elaborate computations are required for
graphene nanotube dots and graphene flakes in order to dis-
play the transition through GSE and GUE expected from
symmetries. Therefore, in realistic graphene samples the out-
standing ballistic behavior of long carbon nanotubes will
probably be replaced by diffusive chaotic behavior for short
and wide nanotube dots even with arbitrary small disorder.
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